娱乐城新用户送彩金-圣淘沙娱乐城返水-卡宾娱乐城信誉打不开

學(xué)術(shù)預(yù)告

當(dāng)前位置:

網(wǎng)站首頁(yè)  >  學(xué)術(shù)預(yù)告  >  正文

求解雙曲守恒律的基于矩的統(tǒng)一模板HWENO格式

活動(dòng)名稱(chēng):求解雙曲守恒律的基于矩的統(tǒng)一模板HWENO格式

時(shí)間:2025年11月28日15:00-17:00

地點(diǎn):重慶國(guó)家應(yīng)用數(shù)學(xué)中心107會(huì)議室

主講人:邱建賢教授(廈門(mén)大學(xué))

主辦單位:重慶國(guó)家應(yīng)用數(shù)學(xué)中心

主講人簡(jiǎn)介:邱建賢,廈門(mén)大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授,陳景潤(rùn)數(shù)學(xué)特聘教授,在間斷Galerkin(DG)、加權(quán)本質(zhì)無(wú)振蕩(WENO)數(shù)值方法的研究及應(yīng)用上取得了許多重要成果,已發(fā)表學(xué)術(shù)論文一百多篇。主持國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目、聯(lián)合基金重點(diǎn)支持項(xiàng)目和國(guó)家重點(diǎn)研發(fā)項(xiàng)目課題各一項(xiàng),參與歐盟第六框架特別研究項(xiàng)目,是項(xiàng)目組中唯一非歐盟的成員,多次應(yīng)邀在國(guó)際會(huì)議上作大會(huì)報(bào)告。

活動(dòng)簡(jiǎn)介:In this presentation, we introduce a fifth-order moment-based Hermite weighted essentially non-oscillatory scheme with unified stencils (termed as HWENO-U) forhyperbolic conservation laws. The main idea of the HWENO-U scheme is to modify the first-order moment by a HWENO limiter only in the time discretization using the same information of spatial reconstructions, in which the limiter not only overcomes spurious oscillations well, but also ensures the stability of the fully.discrete scheme. For the HWENO reconstructions. Compared with previous HWENO schemes, the major advantage of the HWENO-U scheme is that only a single HWENO reconstruction applied throughout the entire procedures without any modifications for the governing equations. Extensive benchmarks are carried out to validate the accuracy, efficiency,resolution, and robustness of the proposed scheme.

版權(quán)所有?重慶師范大學(xué) 渝ICP 備05001042號(hào) 渝公網(wǎng)安備 50009802500172號(hào)